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Summary. A distributed memory programming model was used in a fully 
parallel implementation of  the ab initio integral evaluation program ARGOS 
(R. Pitzer (1973) J. Chem. Phys.  58:3111), on shared memory UNIX computers. 
The method used is applicable to many similar problems, including derivative 
integral evaluation. Only a few lines of  the existing sequential F O R T R A N  source 
required modification. Initial timings on several multi-processor computers are 
presented. A simplified version of the programming tool used is also presented, 
and general consideration is given to the parallel implementation of quantum 
chemistry algorithms. 

Key words: Parallel a lgor i thms-  Shared memory compu te r s -  Ab initio al- 
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Introduction 

The general application of  ab initio chemistry methods is still limited by the vast 
amount  of computer resources required to perform electronic structure calcula- 
tions of any quality on even small molecular systems. For  this reason computa- 
tional chemists have been tracking developments in computer technology, and 
developing algorithms and programming models appropriately. Notable exam- 
ples would be the development of matrix based algorithms for vector computers 
(e.g. the CRAY-1 [1]), the use of  local attached array processors (e.g. the 
FPS-164 [2]), the the use of large memory algorithms [3]. More recently there has 
been active interest in the exploitation of  parallel computers [4-7]. It is noted 
that nearly all current super- and mini-super-computers use multiple processors 
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to achieve their peak performance. Increased parallelism seems to be the only 
path to a new generation of cost-effective, high-performance computers, the 
debate really focusing around machine architecture and software development. 

Shared memory parallel machines 1 are generally assumed to be easier to use 
and program than distributed memory machines 2. This, in part, is because the 
environment is familiar, most programs can run unmodified (albeit inefficiently) 
and compilers seemingly automate much of the work required to parallelize a 
subroutine. In addition, optimized scientific libraries can provide an easy route 
to high performance, and there is usually no explicit involvement of the 
programmer in inter-process communication. However, in typical quantum 
chemistry applications, the task granularity within single subroutines is not 
sufficient to permit efficient parallelization, and one must retreat further up the 
subroutine calling tree to find the required level of parallelism. Compilers are not 
yet capable of doing meaningful analysis at this level of program structure and 
the programmer is left having to do significant amounts of re-writing. 

Some algorithms do admit a straightforward and efficient implementation on 
distributed memory machines. Examples would be many Monte-Carlo models 
[4, 8], classical trajectories [4], and ab initio integral evaluation [6, 7]. These 
algorithms have in common that the work of each process can be driven by local 
data, the reqUired infrequent inter-process communication not being fundamen- 
tal to the work performed by each process. Programmers and vendors of shared 
memory machines often seem to have ignored this experience. 

ARGOS (ARGonne and Ohio State [9]) is a general program to evaluate the 
one and two electron integrals required in ab initio electronic structure calcula- 
tions, allowing for symmetry adaptation of generally contracted basis sets. 
Whilst it may not be the most efficient such program, it is certainly one of the 
most general and widely used. An efficient, portable, parallel implementation 
would be very useful. We emphasize the need for portability as this program is 
used by many groups on a wide variety of multi-processor computers, the most 
notable of which would be Cray. Below we describe a simple, efficient paralleliza- 
tion of ARGOS for all shared memory UNIX based computers, using a 
distributed memory programming model. We present simplified versions of the 
tools used; the actual versions used are available from the authors upon request. 

Parallel implementation 

The structure of integral evaluation programs pre-disposes them to a coarse- 
grain, data-driven parallel implementation. Typically, after some setup, a nest of 
four loops (over the shells of basis functions, or some equivalent) is entered with 
the actual integrals being evaluated within a complex subroutine calling tree. 
ARGOS, in common with nearly all such programs, passes arguments to and 
between these low level routines through both common blocks and formal 
parameters. The low level routines do not have sufficient granularity to paral- 
Mize well. Any attempt to seek a higher level of parallelism in a shared memory 

ared memory parallel machines have a memory which is directly addressable by all the 
~ s s o r s  

~tributed memory parallel machines do not have any globally addressable memory, and 
~ssors must share data by message passing, explicit or otherwise 
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model would require manual determination of data dependencies created by the 
common block usage, and substantial re-coding. Great reliance would also be 
put upon the ability of optimizing compilers to generate correct re-entrant code, 
which seems to be a problem on some machines. On a distributed memory 
machine it suffices to allow different processors to handle successive iterations of 
the nest of four loops; all data dependencies being eliminated since no data is 
shared. There have been several implementations of two electron integral evalu- 
ation programs on distributed memory machines (for example [6, 7]), all using 
this scheme, and all remarking on how straightforward it is. Here we develop the 
minimum tools necessary to provide a portable distributed memory implementa- 
tion on shared memory computers. 

There are many 'portable' memory programming environments that are 
being or have been developed, supporting hardware platforms from hypercubes 
and networks of workstations, to shared memory multi-processors. An incom- 
plete list might include PARMACS [ I0], Cosmic Environment [ 11], LINDA [ 12], 
SR [13], and STRAND [14]. Of these only STRAND and LINDA are available 
as commercially supported products, and then only on a relatively small number 
of platforms (mostly workstations). Since the requirements of tools for computer 
science research into parallel computing and for physical science production 
computing are quite different (we require robustness, high performance, portabil- 
ity, full support for FORTRAN I/O), most of these tools are not yet suitable for 
our use. We also have neither the expertise nor the desire to port large amounts 
of O/S specific code, so for the simple application under discussion here we shall 
develop our own small set of tools with a minimum of functionality. However, 
for more complex applications, packages such as STRAND may have a role to 
play by providing a level of abstraction from the hardware that is not possible 
with vendor provided tools. Using PARMACS [10] we already have model 
Hartree-Fock programs which are portable between workstation networks and 
shared memory machines. One could anticipate sophisticated configuration 
interaction programs portable between hypercubes and Crays, if such programs 
were deemed valuable. 

All that is needed for a distributed memory implementation of ARGOS (or 
any similar application) is some means of: (1) creating a small number of 
identical processes, (2) initializing the data for each process, (3) dividing 
(deterministically or dynamically) the work between the processes, (4) assemble 
the final list of integrals, and (5) killing the superfluous processes. Fortunately 
UNIX makes this straightforward, and by using the C UNIX system call 
interface we achieve a degree of portability that would not be so easy in 
FORTRAN. This functionality is implemented in the tools presented in program 
listing (1), whose use is exemplified by the example in listing (2). To handle steps 
(1) and (2) we use the UNIX system call fork0, which makes a copy of the 
calling process that is identical to its 'parent' except for process identification and 
some file and system parameters. To the parent fork0 returns the process 
number of the child, while to the child fork0 returns zero. Step (5) may be 
implemented by having the parent explicitly wait for its children to finish their 
allotted work. Step (3) is achieved by assigning each process a logical process 
number (0-nproc-1, nproc being the number of processes). Iterations of subse- 
quent loops may be assigned deterministically on the basis of this value, possibly 
by the mechanism described in reference [7] and which is also used in program 
listing 2. We discuss dynamic load balancing in the next section. Assuming that 
each process writes its own distinct file of integrals, the final list of integrals is 
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most easily assembled (step (4)) by simple file concatenation. It would also be 
possible for the processes to communicate with another process whose job is just 
to write the file, or programs reading the integrals could simply read the multiple 
files. The first solution places heavy demand on inter-process communication, 
which is not otherwise needed, and the second solution requires modification of 
many independent programs. 

The forking of processes is at the heart of UNIX and on many virtual 
memory machines is very efficient, as new physical copies of pages in the parent's 
memory space are not made until they are written to. Real memory machines, 
such as Cray, have to do much more explicit copying of memory and so are 
slower at starting up processes. However, at the very worst the time to fork a 
sizable process is measured in tenths of a second, and is negligible compared to 
the work each process is doing here. 

A call to the subroutine parallel creates the requested number of essentially 
identical processes returning to each its logical process value. A call to serial 
causes the parent to wait for its children to die, and causes a child to exit 
normally. The net effect is that all code between calls to parallel and serial is 
executed by multiple processes with independent data. Care must be taken with 
files; the best course is for each process to open and close files with unique 
names. The structure of the integral code is illustrated in the test example (listing 
2), which merely writes a list of numbers to a file, and then reads and sums them. 
Multiple processes write multiple files, which are then concatenated before the 
addition. The FORTRAN program first reads in the requested number of 
processes. This step corresponds to the data initialization of the integral pro- 
gram, which is much more complex and involves extensive use of COMMON 
blocks, etc. The program then calls parallel to create the new processes, which 
open unique files and execute distinct iterations of the DO loop. Note that nests 
of DO loops are readily parallelized by the modulo mechanism used [7]. The call 
to serial explicitly ends the parallel section and subsequently the master process 
concatenates the files and computes the sum. 

Only the two-electron integral evaluation has been parallelized within 
ARGOS, as the one-electron integrals take just a few seconds. The only code 
modifications required were in the two-electron driver routine: (1) outside the nest 
of loops parallel is called and unique integral files are opened, (2) within the body 
of the loops work is shared in the same manner as in the example, and (3) just 
after the loops, serial is called and the integral files are concatenated into one. 
About a dozen lines of the original driver routine were modified or added and new 
routines were written to handle the concatenation of the integral and log files. 
Including extra statements for timing purposes and comments, only 500 lines of 
source were modified or written in total. We note that our versions of parallel and 
serial perform much more error checking than those in listing l, and that the 
distribution of work has actually been hidden inside a subroutine call (which just 
returns the next value of a counter given its previous value, the total number of 
processes and a logical process number). This increased modularity cleans up the 
code and makes load-balancing schemes straightforward to implement. 

Results and discussion 

This program has been run on all multi-processor Cray models, an Alliant FX/8 
and a four processor Ardent Titan. Table 1 presents timings for water in a 41 
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Table 1. Parallel ARGOS timings for C2~ water with a 41 function segmented basis set. All times 
reported are in seconds. The parent wall time is the total wall clock execution time for the job. The 
parent cpu time is the total cpu time used by the parent process. The two-electron times report the 
minimum, maximum and average cpu times spent evaluating two-electron integrals by the processes. 
Values in parentheses are ratios to times for a single process 

Machine No. of Parent process Two-electron cpu 

Processes cpu wall min. max. ave. 

Ardent Titan 1 91.8 (1.0) 94.0 (1.0) 90.1 90.1 90.1 
4 27.2 (3.4) 37.0 (2.5) 24.8 25.8 25.5 

Alliant FX/8 l 87.6 (1.0) 90.0 (1.0) 85.7 85.7 85.7 
4 24.17 0 30.0 (3.0) 21.4 24.2 22.7 
8 14.0 0 21.0 (4.3) 10.7 13.0 •2.2 

CRAY-XMP l 6.4 (1.0) 6.6 (1.0) 6.26 6.26 6.26 
4 1.6 (4.0) 3.1 (2.1) 1.47 1.68 1.57 

CRAY-YMP 1 5.36 (1.0) 5.38 (1.0) 5.25 5.25 5.25 
4 1.34 (4.0) 2.25 (2.4) 1.24 1.41 1.32 
8 0.67 (8.0) 1.58 (3.4) 0.56 0.71 0.66 

f u n c t i o n  s e g m e n t e d  T Z P  bas i s  set  [16], u s i n g  C2~ s y m m e t r y .  T a b l e  2 c o n t a i n s  
t i m i n g s  fo r  D2h e t h y l e n e  in  a 62 f u n c t i o n  6 - 3 1 1 G * *  bas i s  [17]. T a b l e  3 c o n t a i n s  
t i m i n g s  fo r  C a F S i 4 H  9 in  a 101 f u n c t i o n  g e n e r a l l y  c o n t r a c t e d  D Z  bas i s  set  [18], 
w i t h  n o  s y m m e t r y .  Al l  t i m e s  a r e  in  s e c o n d s .  C a l c u l a t i o n s  o n  t h e  A l l i a n t  a n d  

Table 2. Parallel ARGOS timings for D2h ethylene with a 62 function 6-311G** basis. All times 
reported are in seconds. The parent wall time is the total wall clock execution time for the job. The 
parent cpu time is the total cpu time used by the parent process. The two-electron times report the 
minimum, maximum and average cpu times spent evaluating two-electron integrals by the processes. 
Values in parentheses are ratios to times for a single process 

Machine No. of Parent process Two-electron cpu 

Processes cpu wall min. max. ave. 

Ardent Titan 1 392.6 (1.0) 396.0 (1.0) 389.3 389.3 389.3 
4 108.4 (3.6) 138.0 (2.9) 91.3 111.9 101.6 

Alliant FX/8 1 332.4 (1.0) 339.0 (1.0) 327.8 327.8 327.8 
4 91.2 (3.6) 104.0 (3.3) 80.9 91.1 84.7 
8 43.0 (7.7) 80.0 (4.2) 31.1 65.2 45.5 

CRAY-XMP 1 26.4 (1.0) 27.5 (1.0) 26,1 26.1 26,1 
4 6.8 (3.9) 21.4 (1,3) 6,1 7.0 6.52 

CRAY-YMP 1 22.6 (1.0) 22.8 (1.0) 22.3 22.3 22.3 
4 5.9 (3.8) 6.6 (3.5) 5.2 6.0 5.6 
8 2.8 (8.0) 4.4 (5.2) 2.0 3.4 2.8 
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Table 3. Parallel ARGOS timings for CaFSi4H 9 with a 101 function generally contracted DZ basis 
set. All times reported are in seconds. The parent wall time is the total wall clock execution time for 
the job. The parent cpu time is the total cpu time used by the parent process. The two-electron times 
report the minimum, maximum and average cpu times spent evaluating two-electron integrals by the 
processes. Values in parentheses are ratios to times for a single process 

Machine No. of Parent process Two-electron cpu 

Processes cpu wall min. max. ave. 

Ardent Titan 1 21851.4 (1.0) 22616 (1.0) 21817.2 21817.2 21817.2 
4 5813.6 (3.8) 6919.0 (3.3) 5445.2 5839.9 5635.8 

Alliant FX/8 1 18594.8 (1.0) 18671.0 (1.0) 18560.0 18560,0 1856.0 
4 4969.2 (3.7) 5194.0 (3.6) 4683.5 4999.2 4825.7 
8 2715.6 (6.9) 2927.0 (6.4) 2488.1 2692.3 2561.9 

CRAY-XMP 1 . . . .  
4 358.2 - 344.5 364.0 351.8 

CRAY-YMP 1 1209.6 (1.0) 1950.5 (1.0) 1203.5 1203.5 1203,5 
4 306.8 (3.9) 859.2 (2.3) 295.6 839.5 301.6 
8 155.9 (7.8) 1253.7 (1.6) 148.0 159.1 151.1 

Ardent were run on dedicated machines. The Crays were not dedicated, thus 
elapsed times on the Crays are not as meaningful due to variable load from other 
users. The parent wall and cpu times are the total times for the parent process, 
including all setup, computation of the one-electron integrals, its share of the 
two-electron integrals and concatenation of  the integral files. The ratio of the 
elapsed time to the time for a single process is an accurate measure of the 
speed-up from parallelization. For more detailed analysis of the parallelization of 
the two-electron integrals we report the minimum, maximum and average cpu 
times spent by processes in that section of the code. If  the work were perfectly 
shared between processes these numbers would be equal. 

First consider the non-load balanced timings. The single process cpu times 
reflect that ARGOS is dominated by scalar floating point operations. Only the 
atomic to symmetry orbital transformation has significant vector content. The 
Ardent Titan consistently shows poorer wall time speed-up than the Aliant. This 
is due to the relatively slow single drive SCSI file system that was used 
(approximately 0.6 Mbytes/s transfer rate). A two way striped SCSI file system 
or SMD disks would alleviate this. For  all the problems the CRAY-YMP comes 
in with a parent process cpu time speed-up of  nearly eight on eight processors, 
while the Alliant is in the range of six to seven. Since the work distribution is 
deterministic in these tests one would naively expect the same cpu speed-up on 
all machines. We attribute the variation to system timing differences, variable 
load on the Crays (cpu timings can vary by at least 10%), the cache on the 
Alliant, and extra system cpu overhead for I/O on the Alliant. As the number of  
processes increase so does the amount of  I/O that must be done to concatenate 
the integral files. This I/O cannot be overlapped with computation and con- 
tributes to the poor scaling of the elapsed time. However, for the largest problem 
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we achieve a respectable 6.4 speed-up for the total job elapsed time on eight 
processors of an Alliant FX/8. Faster disks and load balancing will improve this. 
Deficiencies in the distribution of work show up in the times spent actually 
evaluating integrals. In these examples ARGOS computes integrals over symme- 
try adapted combinations of atomic basis functions. The nested loops in ARGOS 
effectively run over symmetry unique basis functions. Thus a large number of 
symmetry equivalent centers would increase the time taken to compute integrals 
involving these centers. This has the effect of degrading load balancing with the 
simple deterministic algorithm for apportioning the work. As expected, the small 
water case and the highly symmetric ethylene molecule show poor load balanc- 
ing. On the Alliant we have implemented a dynamic load balancing scheme using 
a counter shared between all the processes (this is implemented using a shared 
memory region). Instead of each process evaluating every nproc'th set of 
integrals, each process merely computes the next set which needs doing. Use of 
the shared counter introduces negligible overhead. Times on the Alliant using 
load balancing are given in Table 4 for the water and ethylene examples. The 
two-electron integral cpu times show a marked improvement. 

Conclusions 

It is possible to generate efficient portable parallel programs, but one cannot rely 
upon vendor provided tools. Shared memory models are not necessarily the way 
to use shared memory machines. The integral evaluation program illustrates this 
very well. The mechanism used to parallelize ARGOS would be even more 
efficient when applied to evaluation of SCF energy gradients, as no I/O is 
involved. A down side to distributed memory models is their profligate use of 
memory, but all parallel algorithms suffer from this to some extent. The simple 
model used here serves to ilustrate the value of distributed memory programming 
models. To  significantly improve on current performance we need either to 
modify the manner in which the integral files are joined or to buy a faster disk 
sub-system. The best solution seems to require a server process writing a single 
file, communicating with the other processes through shared memory buffers. 

Table 4. Parallel ARGOS timings with load balancing for the water and ethylene examples on the 
Alliant FX/8. All times reported are in seconds. The parent wall time is the total wall clock execution 
time for the job. The parent cpu time is the total cpu time used by the parent process. The 
two-electron times report the minimum, maximum and average cpu times spent evaluating two-elec- 
tron integrals by the processes. Values in parentheses are ratios to times for a single process 

Example No. of Parent process Two-electron cpu 

Processes cpu wall rain, max. ave. 

water 

ethylene 

1 87.6 (1.0) 89.0 (1.0) 85.8 85.8 85.8 
4 25.8 (3.4) 29.0 (3.1) 22.2 23.0 22.5 
8 15.9 (5.5) 22.0 (4.0) 12.0 13.0 12.4 

1 332.1 (1,0) 339.0 (1,0) 327.8 327.8 327.8 
4 91.5 (3,6) 100.0 (3,4) 84.3 85.2 84,8 
8 53.0 (6,3) 64.0 (5.3) 43.4 50.2 46.1 
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Thus the best features o f  distributed memory  models  (modular i ty  and data  
independence) and shared memory  models (fast synchronizat ion and communi-  
cat ion th rough  shared data) will be exploited simultaneously. We would encour- 
age computer  vendors  to support  several portable parallel p rogramming  
languages/environments  (e.g. L I N D A  and S T R A N D ) .  This helps the pro-  
grammer  as well as the vendor  by providing a wider software base. 

The simple tools used here implement a crude form o f  message passing using 
shared files. We have since developed a much  more  sophisticated toolset, using 
shared m e m o r y  and T CP  sockets to achieve portabil i ty and performance.  These 
tools are very similar to the P A R M A C S  [10] but  substantially more  robust.  

Increased parallelism is not  a substitute for an inefficient algorithm. On a 
single processor o f  a C R A Y - X M P  the U.K.  version o f  G A M E S S  [19] takes just 
6.8 cpu seconds to evaluate the integrals ( symmetry  unique list) for  the ethylene 
example, rather than the 26.4 seconds used by A R G O S  (symmetry  adapted list). 
Indeed G A M E S S  performs the entire integrals and SCF calculation i n  12.4 
seconds. However ,  G A M E S S  is not  capable o f  generating symmetry  adapted 
integrals, or  handling large generally contracted basis sets. This and other 
functionali ty means that  A R G O S  will stay in wide use for  a while to come. 

Acknowledgements. This work was supported by the U.S. Department of Energy, Office of Basic 
Energy Sciences, Division of Chemical Sciences, under contract W-31-109-ENG-38. 

Program I. C source for primitive version of PARALLEL and SERIAL 

/* Primitive versions of PARALLEL and SERIAL. 

Compile with the machine type defined on the cc command line 
e.g. cc -c -DSUN parallel.c 

Tested on: CRAY (X, Y, 2), ARDENT, SUN, ALLIANT */ 
# include (stdio.h) 
# include (signal.h) 

/* Define routine names for compatibility with FORTRAN linking conventions. */ 
# define SERIALP SERIAl_, 
# define PARALLELP PARALLEL 
# if defined(SUN)]1 defined(ALLIANT) 
# undef SERIALP 
# undef PARALLELP 
# define SERIALP serial 
# define PARALLELP parallel 
# endif 

/* max proc sets a sensible maximum number of forked processes */ 
# define max_proc 7 
static int pid_list[max_proc]; 

/* n_proc_made is the number of processes that are actually forked. 
This will be correct only for the parent process */ 

static int n proc_made = 0; 
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/* Cleanup blindly kills all child processes, and does exit(l). */ 
static void cleanup() 
{ 

while (n proc_made--) 
(void) kill(pid list[n_proc made],SIGKILL); 

exit(1); 

i 

/* Called by the parent serial waits for all child processes to complete. If called by 
a child it does exit(O), n_proc made is re-set to 0 for the next call to parallel. */ 

void SERIALP (nproc, iproc) 
int *nproc, *iproc; 

{ 
int pid; 

(void) lttush(stdout); 
(void) fltush(stderr); 

if (*iproc ! = O) 
exit(O); 

whi le(n  proc made) { 
--n proc_made; 
pid = wait(int*) NULL);  
(void) printf("SERIAL: Child finished, pid = %d.\n",  pid); 

} 

\* Parallel forks nproc-1 copies and returns iproc with a unique value O- > nproc-1, 
the parent process having value O. Upon any error it tries to kill the child processes 
and then aborts. */ 

void PARALLELP (nproc, iproc) 
int *nproc, *iproc; 

{ 
int i, pid; 

if ((*nproc > (max_proc + 1))II (*nproc< =0)) { 
(void) fprintf(stderr, "PARALLEL: nproc = %d, rain = 1, max = %d.\n",  

*nproc, max proc + 1); 
exit(I); 

(void) tttush(stdout); 
(void) fitush(stderr); 
*iproc=O; 

for (i = 1; i < *nproc; i +  +)  { 
if ((pid = fork0) = = - 1) { 

(void) fprintf(stderr, "PARALLEL: Error forking process %d.\n",  i); 
cleanup(); 

} 
else if (pid = = 0) { 

*iproc = i; return; 
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} 
} 

} 
else { 

(void) printf("PARALLEL: Forked process %d, pid = %d. \n" ,  i, pid); 
(void) fftush(stdout); 
pid l i s t [ n _ p r o c  m a d e  + +] = pid; 

Program 2. FORTRAN source illustrating use of the parallel and serial subroutine calls 

program main 
character*40 name 
data limit/10/ 

Demo program for parallel and serial calls. 

11 

10 
C 

C 

C 

write(6, *) 'Input number of processes, 0 to quit' 
read (5, *) nproc 
if (nproc.eq.0) call exit(0) 

Go parallel. All processes then execute code up to call to serial. 

call paraUel(nproc,iproc) 

Each process opens its own data file, testxxxx 

write(name, '("/tmp/test",i4.4)') iproc 
open( 1,form = 'unformatted',status = 'unknown',file = name) 
rewind 1 

Share out the work using icount. The mod(icount,nproc) 
mechanism allows a nest of  loops to be parallelized. 

icount = iproc 
do 10 i = 1,limit 

icount = icount + 1 
if (mod(icount,nproc).ne.O) goto 10 
write( 1)i 

continue 

Go serial. Explicitly close the children's data file first. 

if (iproc.ne.0) close(1,status = 'keep') 
call serial(nproc,iproc) 

Append other files to the end of the main process's file 

do 20 iproc = 1,nproc-1 
write(name,'("/tmp/test",i4.4) ')iproc 
write(6, *) 'Appending file',name 
nval = 0 
open(2,form = 'unformatted',status = 'unknown',file = name) 
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20 
C 

C 

C 

40 
C 

30 read(2,end = 35) j 
nval =nval + 1 
write(1) j 
goto 30 

30 close(2,status = 'delete') 
write(6, *) 'Number of values on the file were',nval 

continue 

Check the results. 

write(6, *)'Checking results' 
rewind 1 
jsum = 0 
isum = 0 
do 40i = l,limit 

read(l) j 
write(6, *) j 
isum = isum + j 
jsum =jsum + j  

continue 

write(6, *) 'isum = ',isum,'jsum = ',jsum 
close( 1,status = 'delete') 
goto 11 

end 
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